What are vision language models (VLMs)?

Media Thumbnail
00:00
00:00
1x
  • 0.5
  • 1
  • 1.25
  • 1.5
  • 1.75
  • 2
This is a podcast episode titled, What are vision language models (VLMs)?. The summary for this episode is: <p>This episode of&nbsp;<em>Techsplainers</em>&nbsp;explores vision language models (VLMs), the sophisticated AI systems that bridge computer vision and natural language processing. We examine how these multimodal models understand relationships between images and text, allowing them to generate image descriptions, answer visual questions, and even create images from text prompts. The podcast dissects the architecture of VLMs, explaining the critical components of vision encoders (which process visual information into vector embeddings) and language encoders (which interpret textual data). We delve into training strategies, including contrastive learning methods like CLIP, masking techniques, generative approaches, and transfer learning from pretrained models. The discussion highlights real-world applications—from image captioning and generation to visual search, image segmentation, and object detection—while showcasing leading models like DeepSeek-VL2, Google's Gemini 2.0, OpenAI's GPT-4o, Meta's Llama 3.2, and NVIDIA's NVLM. Finally, we address implementation challenges similar to traditional LLMs, including data bias, computational complexity, and the risk of hallucinations. </p><p><br></p><p>Find more information at&nbsp;<a href="https://www.ibm.com/think/podcasts/techsplainers" rel="noopener noreferrer" target="_blank">https://www.ibm.com/think/podcasts/techsplainers</a></p><p><br></p><p><strong>Narrated by Amanda Downie</strong></p>

DESCRIPTION

This episode of Techsplainers explores vision language models (VLMs), the sophisticated AI systems that bridge computer vision and natural language processing. We examine how these multimodal models understand relationships between images and text, allowing them to generate image descriptions, answer visual questions, and even create images from text prompts. The podcast dissects the architecture of VLMs, explaining the critical components of vision encoders (which process visual information into vector embeddings) and language encoders (which interpret textual data). We delve into training strategies, including contrastive learning methods like CLIP, masking techniques, generative approaches, and transfer learning from pretrained models. The discussion highlights real-world applications—from image captioning and generation to visual search, image segmentation, and object detection—while showcasing leading models like DeepSeek-VL2, Google's Gemini 2.0, OpenAI's GPT-4o, Meta's Llama 3.2, and NVIDIA's NVLM. Finally, we address implementation challenges similar to traditional LLMs, including data bias, computational complexity, and the risk of hallucinations.


Find more information at https://www.ibm.com/think/podcasts/techsplainers


Narrated by Amanda Downie